
1

Lab 3: .NET 3.5 Graphical Application Client for secure caTissue caGrid Service
caBIG 2009 Annual Meeting Hack-a-thon

University of Virginia eScience Group
Marty Humphrey, Director

Overview: Create a graphical .NET application as a client for the secure caTissue caGrid Service. We use a
“.NET Dorian Login” client (provided) to first obtain the necessary credentials. As with Lab 1 and Lab 2,
we use the built-in features of Visual Studio to create the client-side code, including the CQL query. A
key feature of the client-side code is a graphical “certificate picker”. In this lab, we’ll use the Windows
Presentation Foundation (WPF) to create the visual representation (Microsoft recommends using
Expression Blend to create WPF and Silverlight applications, but for this simple application we’ll just use
Visual Studio).

NOTE: This lab assumes that you already have a caGrid account

Expected duration: 30 minutes

Preliminary 1: Download and install the Certificate Authority (CA)

certificate
1. Open up a browser (these instructions assume Internet Explorer, but other browsers will work) and

go to the following URL (save the file locally):
http://www.cs.virginia.edu/~humphrey/caBIG_2009_AnnualMeeting/catraininggridca.cer

2. After you save the file locally, double-click on it to open it
3. Select “Install Certificate”, and follow the default options to install the certificate

Preliminary 2: Download .NET Dorian Login Client
4. Download the following file that contains the .NET Dorian Login client (put this file wherever you

want on your machine):
http://www.cs.virginia.edu/~humphrey/caBIG_2009_AnnualMeeting/DorianClient.zip

5. Unzip the file
6. Open the “Debug” folder
7. Double-click “DorianLogin.exe” to launch the login client (if you’re given a security prompt, asking

you if you’re sure you want to run this, select “Run”)
8. Change the “Dorian Service” and “Authentication Service” as necessary, enter the username and

password and then click the “Login” button. Wait a few seconds, and if successful you will see “Login
Successful!” at the bottom of the window. If you see any other behavior, ask for help.

Preliminary 3: Confirm that you have successfully acquired a caGrid

certificate
9. Start  run , type in “mmc” and hit “OK”
10. File  Add/Remove snap-in
11. Add, click on “Certificates”, click “Add”, the default of “My user account” is correct, and then hit

“finish”

http://www.cs.virginia.edu/~humphrey/caBIG_2009_AnnualMeeting/catraininggridca.cer
http://www.cs.virginia.edu/~humphrey/caBIG_2009_AnnualMeeting/DorianClient.zip

2

12. Hit “OK” to close the “Add/remove snap in” window
13. On the left side of the window, expand “Certificates – Current User”, then expand “Personal”, and

then click on “Certificates”
14. In the right side of the window, double-click on your certificate. Explore the tabs as you wish, and

then select “OK”
15. You can now close this window (without saving the “console settings”)

Part 1: Simple GUI for counting items in a secure caTissue Service
16. Run Visual Studio 2008 (Start  All Programs  Microsoft Visual C# 2008 Express Edition) and

create a new C# project: WPF Application (File  New Project WPF Application). Name it
“caTissueClient” and hit “OK” in this dialogue window.

17. Our first task is to add some user controls to the empty window “Window1” and name them. The
components can be dragged and dropped from the Toolbox. The Toolbox is located on the left part
of the screen (if it is not visible, click on View  ToolBox). (All of the following are under the
“Common” part of the toolbox. If Window1 is not shown in Visual Studio, double-click on
Window1.xaml in the Solution Explorer.)

a. Upper left of Window1: Label (give it the content “caTissue Service”)
b. Immediately to the right the label: Textbox (rename it “caTissueServiceBox” and change the

“Text” to https://128.252.227.214:58443/wsrf/services/cagrid/CaTissueCore, which is the
WashU caTissue Core v 1.2.2, but any caTissue should work). It also makes sense to make
“Window1” larger horizontally to fit everything.

c. Immediately below the first label: Label (give it the content “Count the items of:”)
d. To the right of this second label: ListBox
e. Centered below this: button (give it the content “Click here to start”). Stretch the button

horizontally to show all of the text.
f. Centered below this: textbox (rename it “OutputBox”). Make this box fairly big, both

horizontally and vertically. Make the entire “Window1” larger as well. Change the
“HorizontalScrollBarVisibility” and “VerticalScrollBarVisibility” of this textbox to be “auto”.

g. Close the “toolbox” pane.
18. Click on “Window1” and change the “title” to be “caTissue Client”. Also, if you want to, change the

“background” of Window1 to be your favorite color.
19. Now let’s add a few caTissue items from which the user can select. This is probably not the way to

do this if you were building a real application, but this works nicely for this tutorial. Click on ListBox1,
scroll to the “Items” in the properties pane, and click on the “…” box, which will bring up the
“Collection Editor: Items” window. Hit the “Add” and then change the “Content” for each of the
following (don’t hi t “OK” at the bottom of the window until you’re all done with all 4 items)

a. edu.wustl.catissuecore.domain.MolecularSpecimen
b. edu.wustl.catissuecore.domain.TissueSpecimen
c. edu.wustl.catissuecore.domain.FluidSpecimen
d. edu.wustl.catissuecore.domain.CellSpecimen

20. Resize ListBox1 to only show these 4 items

Part 2: Adding the caGrid Service reference
21. Our second task is to generate the client-side proxy objects and configure the service endpoint. This

is essentially what we did in Lab 1, so we have made this available so you don’t have to do it again.

https://128.252.227.214:58443/wsrf/services/cagrid/CaTissueCore

3

Open up a browser to http://www.cs.virginia.edu/~humphrey/caBIG_2009_AnnualMeeting/ and
right-click caTissueSvc.cs and select “Save File As..” and store the file locally (it doesn’t matter
where). Note that we don’t need an “app.config”, as in Lab 1 and Lab 2, because we’ll configure the
service endpoint in code. Now:

a. Right-click on caTissueClient project in the Project Explorer -- it’s the line immediately below
the “Solution ‘caTissueClient’ (1 solution)”, select “Add  Existing Item” and navigate to
where you put caTissueSvc.cs

b. We now need to add the appropriate libraries to the solution (we didn’t have to do this in
Lab 1 and Lab 2 because we did “Add Service Reference”, which adds them automatically):

i. Right-click on caTissueClient project in the Project Explorer, “Add Reference” and
select “System.Runtime.Serialization”

ii. Do the same for “System.ServiceModel”
iii. Do the same for “System.security”

c. Just to make sure everything is okay, compile everything by selecting “Build  Rebuild
Solution” (don’t run the application yet). The “Error list” at the bottom of Visual Studio
should say “0 errors” and “Rebuild All succeeded”. Note: after this step, Visual Studio might
put up a small bar on the top of “window1.xaml” stating “An assembly or related document
has been updated which requires the designer to be reloaded. Click here to reload”. You
should click on this bar here and whenever you see this during the lab.

Part 3: Adding client code to the GUI
22. Our third task is to add the necessary code to generate the CQL query based on the user input (the

selection in the GUI), get the response from the server and display the results on the GUI. Note that
we have designed the GUI to present more debugging-type information – if this were a real
application, we would probably replace the textbox with a much-smaller box to display just the
count returned. Begin this part by double-clicking the button you created in Visual Studio (“Click here
to start”).This will show you the code that will execute when the user hits this button.

23. Let’s add all of the “using” statements all at once, by scrolling to the top of the file and adding:

24. Scroll back down to the body of button1_Click(), which is where we’ll do most of our modifications.
The first code we add will do a little error-checking to make sure that the user selected an item (cut-
and-paste this):

25. Right after this code, add the following code to create the proxy to the service, specifying that all
communications will take place over Transport Level Security (TLS) and that the client will use a
certificate for authentication:

if (listBox1.SelectedItem == null)
{
 OutputBox.Text += "Please select a specimen\n\n";
 return;
}

using System.ServiceModel;
using System.Security.Cryptography.X509Certificates;
using System.Net.Security;

http://www.cs.virginia.edu/~humphrey/caBIG_2009_AnnualMeeting/

4

26. Next, right after the previous code, insert the following code to enable the selection of a certificate
to use:

27. We complete the client by adding the code to construct the CQL query, present the query to the
service over the secure channel (note that we know that that this is secure because the service will
reject the request if the client does not present a valid credential), and print the results to the GUI:

 ListBoxItem specType = (ListBoxItem)listBox1.SelectedItem;

 OutputBox.Text += "Asking " + caTissueServiceBox.Text +
 " for number of " + specType.ContentStringFormat +
 " samples\n\n";

 QueryRequestCqlQuery arg = new QueryRequestCqlQuery();
 arg.CQLQuery = new CQLQuery();
 arg.CQLQuery.Target = new Object();
 arg.CQLQuery.Target.name = (String) specType.Content;

 arg.CQLQuery.QueryModifier = new QueryModifier();
 arg.CQLQuery.QueryModifier.countOnly = true;

 CQLQueryResults result = proxy.query(arg);

 CQLCountResult count = (CQLCountResult)result.Items[0];

 OutputBox.Text += "Answer: " + count.count + " samples\n";

X509Store myStore = new X509Store("My", StoreLocation.CurrentUser);
myStore.Open(OpenFlags.ReadOnly | OpenFlags.OpenExistingOnly);
X509Certificate2Collection selectedCerts =
 X509Certificate2UI.SelectFromCollection(myStore.Certificates,
 "Certificate selector",
 "Choose your caGrid credential to use.",
 X509SelectionFlag.SingleSelection);
X509Certificate2 selectedCert = null;
if (selectedCerts.Count > 0)
{ // if user hits cancel 0 certs are returned.
 selectedCert = selectedCerts[0];
}
if (selectedCert == null)
{
 OutputBox.Text += "No certificate selected. Ending. \n";
 return;
}

proxy.ClientCredentials.ClientCertificate.Certificate = selectedCert;

BasicHttpBinding binding =
 new BasicHttpBinding(BasicHttpSecurityMode.Transport);
binding.Security.Transport.ClientCredentialType =
 HttpClientCredentialType.Certificate;

CaTissueCorePortTypeClient proxy =
 new CaTissueCorePortTypeClient(binding,
 new EndpointAddress(caTissueServiceBox.Text));

5

28. Lastly, by default, Windows expects all host certificates (such as for e-commerce sites) to have
names such as amazon.com, www.amazon.com, buy.com, etc., which is NOT the format that caGrid
services use. In this and the next step, we’ll add simple code in the client to bypass this check. Note
that the client will still confirm that the service has the private key associated with the public key in
the service’s certificate. Also note that there is a more sophisticated check that we’ll ignore for
tutorial simplicity. First, add this code as a new method in the Window1 class (e.g., right before
public Window1()):

29. In the constructor for Window1, right after the invocation of “InitializeComponent()”, add:

30. You’re done! Rebuild the solution and execute the client by hitting F5. Select one of the specimen to
count and hit the “Click here to start” button. After you select your certificate, it could take as long
as 30-45 seconds for the service to respond, so be patient.

System.Net.ServicePointManager.ServerCertificateValidationCallback =
 new RemoteCertificateValidationCallback(IgnoreCertificateChainHandler);

 static private bool IgnoreCertificateChainHandler
 (object sender,
 System.Security.Cryptography.X509Certificates.X509Certificate
 certificate,
 System.Security.Cryptography.X509Certificates.X509Chain chain,
 System.Net.Security.SslPolicyErrors sslPolicyErrors)
 {
 return true;
 }

